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12 Abstract

13 Satellite measurements of tropospheric trace gases are often only used when there are few clouds, which screens out
14 20 — 70% of the data, depending on geographic region. While the lack of high-quality column measurements during
15 cloudy conditions precludes validation of the satellite data, in situ surface measurements and model simulations can
16  provide insight on the quantitative understanding of NO2 during cloudy conditions. Here, we intercompare surface
17 observations, satellite measurements, and models during 2019 over the contiguous U.S. to quantify how NO2

18  concentrations are different under clear and cloudy skies. We find that in situ surface NO2 measurements are, on

19 average, +17% larger on all days compared to restricting to clear sky days and +36% larger during cloudy days

20 versus clear sky days, with a wide distribution based on geographic region and roadway proximity: largest in the

21 Northeast U.S. and smallest in the Southwest U.S. and near major roadways. WRF-Chem simulated surface NO2

22 between cloudy and clear conditions is on average much larger than the observed differences: +59% on cloudy days
23 vs. clear days for the model. This suggests that NO2 in WRF-Chem is more responsive to sunlight and associated
24 photochemistry than in reality. Finally, using in situ NO2 matched to provisional TEMPO data, we find the NO2

25  differences between cloudy and clear conditions to be larger in the afternoon than morning. This study quantifies

26 some of the biases in satellite measurements introduced by using only clear-sky data, and introduces some

27 corrections to account for these biases.
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28 1 Introduction

29 Nitrogen dioxide (NOz) is an air pollutant that adversely affects the human respiratory system (Health Effects Institute,
30 2022; Khreis et al., 2017) and can lead to premature mortality (Burnett et al., 2004; M. Z. He et al., 2020). NOz is also
31 an important precursor for ozone (Os) and fine particulates (PMz:s), which also have serious health impacts. In urban
32 areas, the majority of ambient NO: originates from local NOx emissions (=NO-+NOz; most NOx is emitted as NO
33 which rapidly cycles to NO2) during high-temperature fossil fuel combustion (Crippa et al., 2021). Although end-of-
34 pipe controls (Busca et al., 1998; Koltsakis & Stamatelos, 1997) can reduce the amount of NOx emitted from engines
35 and boilers, these technologies do not recover 100% of the NOx generation during combustion. As a consequence,
36 NO2 accumulates in our atmosphere and many urban areas have NOz concentrations that exceed the World Health

37 Organization guideline of 5.3 ppb for an annual average (Anenberg et al., 2022).

38 Observing local air pollution is typically done by in situ surface monitors, which are spaced throughout a region with
39 a higher density of monitors typically in areas of high population density and known pollution sources. In the United
40 States, there are 1012 in situ monitoring sites measuring some combination of O3, PMas, NO», volatile organic

41 compounds (VOCs), and CO (https://www.epa.gov/ags). While the U.S. monitoring network is more comprehensive

42 than most other countries (Martin et al., 2019), 79% of U.S. counties lack a single monitor and an additional 10% of
43 counties have only a single monitor, leaving only 11% of U.S. counties with more than 1 monitor (Sullivan &
44 Krupnick, 2018). Although a robust and accurate ground-monitoring network is needed, the high operating cost of
45 these instruments can be an important barrier (Kelly et al., 2017). Spatial gaps remain in-between the regulatory
46 monitors, and sometimes these monitors are inadequate for understanding the true ambient air pollution exposure of
47 most U.S. residents, especially those that live and/or work several miles away from a regulatory monitor. Satellite data
48 provide a way to fill in the gaps of the in sifu monitoring network. Methodologies to obtain robust surface air pollutant
49  measurement data from satellite instruments have improved dramatically in the past ten years (Bechle et al., 2015;

50 Larkin et al., 2023; Nawaz et al., 2025; Shetty et al., 2024; W. Sun et al., 2024).

51 NO:z can be observed by remote sensing instruments due to its unique spectroscopic features (Vandaele et al., 1998).
52 The Tropospheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012) has been measuring column amounts
53 of NO2 pollution at ~5.5 x 3.5 km? spatial resolution (van Geffen, 2016) since 30 April 2018. Because of TROPOMI’s
54 higher spatial resolution over predecessor instruments, such as the Ozone Monitoring Instrument (OMI) (24 x 13 km?
55 at nadir) (Levelt et al., 2018), TROPOMI has ~50 daily satellite pixel measurements within a typical city (~1000 km?)
56 during clear skies, while OMI may have only 1-3 daily measurements within the borders of each city. This increased
57  measurement capacity within a city allows us to discern spatial variability undetectable by previous instruments.
58 Further, the data from the satellite instruments can be downscaled using a process called oversampling (de Foy et al.,
59 2009; K. Sun et al., 2018), which re-grids the irregular satellite pixels to a standard and higher spatial resolution. The

60 spatial resolution is thus effectively increased at the expense of the temporal resolution.

61 NO: satellite measurements are of the tropospheric column. In many cases, NO2 column measurements are strongly

62 correlated with the spatial patterns of surface NO2 concentrations (Acker et al., 2025; Harkey & Holloway, 2024; Kim
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63 et al., 2024) and surface NOx emissions (Goldberg et al., 2024). For TROPOMI, studies have shown a strong
64  correlation between tropospheric column measurements and collocated surface NO> for both the 13:30 average (1> =
65 0.67) and the 24-hour average (r* = 0.68) (Goldberg et al., 2021; Kerr et al., 2023). However, there are rare instances
66 in which NOx emissions and NO: enhancements stay aloft and do not affect the surface; these are often situations
67 associated with lightning NOx (Nault et al., 2017), wildfire NOx (Jin et al., 2021; Lin et al., 2024), and aircraft NOx
68 (Maruhashi et al., 2024). In these instances, it can be difficult to determine if the column NO: enhancements are also
69  leading to surface NO2 enhancements. These misinterpretations are more likely to occur over rural regions and/or
70 individual days, as upper-tropospheric NO2 enhancements near urban regions often dwarf NO2 enhancements within

71 the boundary layer especially over monthly or longer timescales (Goldberg et al., 2022).

72 Satellite measurements of trace gases are typically only used when there are few or no clouds; this is often referred
73 to as the clear-sky bias of satellite data. This results in 20 — 70% of the satellite data being filtered out depending on
74 geographic region. The clear-sky bias affects NO2 moreso than other trace gases (such as CO and CHa) because NO:
75 is very photochemically active in the presence of strong sunlight; its effective lifetime during summer daytime is 2 —
76 7 hours (F. Liu et al., 2016) and conversely can be up to 30 hours during winter daytime (Kenagy et al., 2018). The
77  speed at which it transforms into other chemical species is determined by the strength of sunlight, ambient

78 temperature, and oxidation environment (Laughner & Cohen, 2019; Shah et al., 2020). More specifically, NO2 can
79  react with OH to create HNOs (which is usually considered a terminal sink), NOz can photolyze and facilitate the

80 formation of O; in the presence of volatile organic compounds, and NO:z can react with VOCs to create organic

81 nitrates (e.g., peroxyacetyl nitrates and alkyl nitrates) (Zare et al., 2018) with the latter two being temporary sinks of
82 NO:z. Another daytime terminal sink for NO2 is dry deposition; while this removal mechanism is often secondary to
83 photochemical loss in urban environments and is not directly affected by sunlight, it is indirectly affected as cloudy
84  conditions are often associated with increased relative humidity and shallower boundary layer depths, both of which
85 increase dry deposition. Therefore, increased NO2 dry deposition in cloudy conditions could offset some of the

86  decreased NO: photochemical loss rates. The net result is that NO2 concentrations are typically larger during cloudy
87 conditions (Geddes et al., 2012).

88 However, outside of the Geddes et al. (2012) study, little has been done to observationally quantify the bias of NO2
89  being larger during cloudy conditions particularly because there are no column measurements to validate the satellite
90 during cloudy conditions. With that said, there are surface in situ measurements during cloudy conditions that can

91 give us an idea of how the clear-sky bias may affect the estimate of surface concentrations. In this project, we

92 intercompare surface observations, satellite measurements, and models under clear and cloudy skies to better

93 quantify the amount of surface bias of NO2 concentrations that is being introduced when clouds are screened from
94 the satellite data. Our analysis is focused on the United States during 2019 due the high density of in sifu monitors
95 and availability of high-resolution regional chemical transport models. The motivation of this project is two-fold: 1)
96 to determine what the scientific community may be missing when excluding clouds from satellite-based NO2

97 analyses and 2) to understand how geostationary NO: satellite measurements may be affected by such a bias and

98 potentially partially remediate such a bias.
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99 2 Methods
100 2.1 EPA AQS Data

101 Hourly in situ NO2 measurements were obtained from the pre-generated EPA Air Quality System (AQS) database:

102 https://ags.epa.gov/agsweb/airdata/download_files.html. These routine measurements are operated and maintained by

103 various state and federal agencies. 91% of the “NO2” measurements in 2019 were acquired through a
104 chemiluminescence technique which converts NO2 and a small amount of NOy species — such as alkyl nitrates,
105  peroxynitrates, and nitric acid — to NO using a heated molybdenum converter, and the NO is measured by quantifying
106 the luminesce of NO when reacted in excess O3 (Dickerson et al., 2019). Other methods to measure in situ NO2 include
107 Cavity Attenuated Phase Shift (Kebabian et al., 2008) and Laser Induced Fluorescence (Thornton et al., 2000), but
108 these methods are less common (9% of all NO2 monitors in 2019) and more expensive to operate and maintain. Annual
109 and seasonal averages at 13:30 local standard time (between 13:00 — 14:00) of the in sifu data were considered valid
110 and used if more than 75% of the days of the year/season had valid data. There were 449 monitoring locations in 2019
111 in the U.S. that achieved these criteria for an annual average, which equates to 1 monitor per ~730,000 U.S. residents.
112 For the baseline analysis, we further remove data from the 75 monitoring locations (17% of the locations) that are
113 classified as “near-road” by the EPA, which means that they are installed within 20 m from major interstates since
114 these in situ measurements are not representative of a ~20 km? satellite pixel measurement; we include the “near-
115  road” NO; monitoring data in sensitivity analyses. NO> measurements between cloudy and clear-sky days are
116 intercompared using the normalized mean change (NMC) as described in Equation 1, where X and ¥ are means of the

117 two datasets being analyzed.

118 NMC(%) =100 x (Z5) (1)
119 2.2 Satellite NO: Instruments

120 NO:z slant column densities are derived from radiance measurements in the 405 — 465 nm spectral window of the UV-
121 VIS-NIR spectrometer (van Geffen et al., 2021). Satellite instruments observe NO2 by comparing observed spectra
122 with a reference spectrum to derive the amount of NOz in the atmosphere between the instrument and the surface; this
123 technique is called differential optical absorption spectroscopy (DOAS) (Platt, 1994). Tropospheric vertical column
124 density data, which represent the vertically integrated number of NO2 molecules per unit area between the surface and
125 the tropopause, are then calculated by subtracting the stratospheric portion and then converting the tropospheric slant
126 column to a vertical column using an air mass factor (AMF) (Boersma et al., 2011). The AMF is a unitless quantity

127 wused to convert the slant column into a vertical column and is a function of the satellite viewing angles, solar angles,
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128 the effective cloud radiance fraction and pressure, the vertical profile shape of NO2 provided by a chemical transport

129 model simulation, and the surface reflectivity (Lorente et al., 2017; Palmer et al., 2001).
130 2.2.1 TROPOMI

131 TROPOMI was launched by the European Space Agency (ESA) on 13 October 2017, and data from the instrument
132 became available on 30 April 2018, after an approximately 6-month calibration period. The satellite follows a sun-
133 synchronous, low-earth (825 km) orbit with an equator overpass time of approximately 13:30 local solar time.
134 TROPOMI measures total column amounts of several trace gases: NO2, HCHO, O3, CO, CHs, among others. At nadir,
135 pixel sizes are 3.5 x 7 km? (modified to 3.5 x 5.5 km? on August 6, 2019) with the edges having slightly larger pixels
136 sizes (~14 km wide) across a 2600 km swath, equating to 450 rows (van Geffen et al., 2020).

137 For our analysis we use the TROPOMI NO: version 2.4 (v2.4) re-processed algorithm during Jan 1, 2019 — Dec 31,
138 2019. The TROPOMI NO:z v2.4 product has a documented median low bias of -34.8% in moderately polluted locations
139 (when NO2 measurements are between 3 — 14 x 10'* molec/cm?) when compared to a MAX-DOAS network (Lambert
140 et al., 2023). Prior work has demonstrated a strong correlation between TROPOMI NO2 column measurements and
141 NO:z surface concentrations in urban areas (Demetillo et al., 2020; Dressel et al., 2022; Goldberg et al., 2021; Nawaz
142 et al., 2025). For our baseline, we screened TROPOMI pixels for quality assurance flag values greater than 0.75, and
143 conduct a sensitivity analysis of filtering only with a cloud radiative fraction filter of 0.5. The cloud radiative fraction
144 is calculated from the O2 A-band using the FRESCO-S algorithm. Due to differences in wavelength between the O2
145 A-band and the NO: retrieval window, the cloud fraction retrieved in the O2 A-band is not exactly representative for

146 the cloud fraction in the NO2 window, but it is similar.

147 The filtered data were re-gridded to a 0.01° x 0.01° resolution, to create a custom “Level-3” data product (Goldberg
148 et al., 2021) during cloud-free and cloudy conditions. Single pixel TROPOMI tropospheric vertical column NO:
149  uncertainties have been quantified to be between 25 — 50% under clear skies and this uncertainty is dominated by
150 uncertainty in the tropospheric air mass factor (Glissenaar et al., 2025; S. Liu et al., 2021; Rijsdijk et al., 2025);
151 uncertainties of measurements with cloud fractions > 0.5 are larger. Oversampled NO2 measurements over monthly
152 and annual timeframes (10s - 100s of measurements) have a smaller amount of uncertainty, approximately 10 — 20 %

153 depending on location and season (Glissenaar et al., 2025) .
154 2.2.2 TEMPO

155 TEMPO was launched by SpaceX on 7 April 2023 and is hosted on Maxar Intelsat 40e. Data from the instrument
156  became available on 2 August 2023, after an approximately 4-month dry-out, cool-down, and calibration period. The
157 satellite is in geostationary orbit centered over the United States with north-south coverage extending from Mexico to
158 southern Canada and east-west coverage from Puerto Rico to the Pacific coast. TEMPO operationally measures total

159 column amounts of NO2, HCHO, and Os with additional products forthcoming. At nadir, pixel sizes are 4.75 x 2 km?
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160  with the North-east and North-west edges having slightly larger pixels sizes. The instrument observes the full east-

161 west swath approximately once every hour.

162 For our analysis we use the TEMPO NO: version 3 algorithm during 2 Aug 2023 — 31 Aug 2024. The data was filtered
163 to include pixels only where the effective cloud fractions are less than 0.15 and the main data quality flags are equal
164 to 0. The filtered data was re-gridded to a 0.01° x 0.01° resolution, to create a custom “Level-3" data product (Goldberg
165 et al., 2021) during cloud-free and cloudy conditions. Single pixel TEMPO tropospheric vertical column NO2
166  uncertainties can be assumed to be similar to the uncertainty of TROPOMI measurements (Glissenaar et al., 2025),
167  which are between 25 — 50% under clear skies for individual pixels, and 10 — 20% for oversampled averages; future

168 work will better quantify the uncertainties of TEMPO NO: measurements.
169 2.3 ERAS Re-analysis

170 We intercompare the cloud radiative fractions from TROPOMI to the ERAS re-analysis (Hersbach et al., 2020) of
171 total cloud fractions in the early afternoon (18Z for Eastern Time, 19Z for Central Time, 20Z for Mountain Time, 21Z
172 for Pacific Time), which approximates the overpass time of TROPOMI over the contiguous United States. The ERAS
173 total cloud fraction is a unitless quantity representing how much of a grid cell is covered by a cloud (e.g., condensed
174  water vapor) at any vertical level of the atmosphere and does not differentiate between the optical properties of those
175 clouds. The ERAS re-analysis data are reported at a 0.25° x 0.25° spatial resolution and the cloud fractions are

176 interpolated, using bilinear interpolation, to the 0.01° % 0.01° oversampled TROPOMI NO: grid.
177 2.4 WRF-Chem

178 The Weather Research and Forecasting with Chemistry (WRF-Chem) model was run at 12 km x 12 km over the
179  Continental U.S. for all days of 2019: 1 January 2019 — 31 December 2019 as described in He et al. (2024). For
180 anthropogenic emissions, the Fuel-based Inventory of Vehicle Emissions (FIVE) was used to provide on-road and off-
181 road mobile emissions, the Fuel-based Oil and Gas (FOG) inventory was used for emissions associated with oil and
182 natural gas production, power plant emissions were provided by Continuous Emissions Monitoring Systems (CEMS),
183 and all other anthropogenic emissions were obtained from the 2014 or 2017 National Emissions Inventory (NEI).
184  Biogenic emissions were estimated using Biogenic Emissions Inventory System (BEIS) version 3.13. Gas-phase
185 chemistry was from the RACM_ESRL_VCP scheme. Boundary conditions were provided from the Realtime Air
186 Quality Modeling System (RAQMS, http://raqgms-ops.ssec.wisc.edu/) developed by the University of Wisconsin-
187 Madison. The cloud fractions used in this project are from the total cloud fraction “CLDFRA” variable.
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188 3 Results
189 3.1 CONUS Cloud Patterns

190  We first conduct an analysis of cloud patterns across the contiguous United States, and inter-compare clear-sky days
191 estimated by TROPOMI, the ERAS re-analysis, and the WRF-Chem model (Figure 1). For TROPOMI, we define
192 clear skies as the percentage of days with ga_value > 0.75, which almost exclusively filters based on cloud fractions
193 <0.5; cloud-free snow-covered scenes typically have a gqa_value > 0.75 (Eskes et al., 2022). For ERA5 and WRF-
194 Chem, we define clear skies as the percentage of days with the total cloud fractions <0.5. ERA5 and WRF-Chem
195  have similar clear-sky spatial patterns as TROPOMI but show systematically lower amounts of clear-skies by 8%.
196 The small systematic difference between TROPOMI and ERAS when filtering for cloud fractions at 13:30 is likely
197  driven by how optically thin cirrus-like clouds are handled; for TROPOMI these are being observed based on optical
198 properties and therefore optically thin clouds are not assumed to be a cloud, whereas in weather models (ERAS and
199  WRF-Chem) these are being computed as vertical layers in the atmosphere with condensed water vapor. Overall,
200 there is very strong agreement between the three datasets in the estimation of clouds giving us confidence that

201 TROPOMI, ERAS, and WRF-Chem are all good estimators of daily clear-sky amounts.
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203  Figure 1. Percentage of clear-sky days over the contiguous U.S. during 2019 from the TROPOMI NO2 v2.4

204  product, ERAS re-analysis, and WRF-Chem. (Top left) Normalized frequency diagram of the binned percentage of
205 clear sky days for the three products. (Top right) Percentage of days in which the qa_value of the TROPOMI NO2
206  v2.4 measurement was greater than 0.75. (Bottom left) Percentage of days in which the total cloud cover (tcc) from
207  the ERAS was less than 0.5. (Bottom right) Percentage of days in each grid cell in which the total cloud fraction
208  from the WRF-Chem was less than 0.5

209
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210 For the remainder of this project, we define “clear sky” based on the TROPOMI NO: retrieval and use days with
211 observations exceeding a qa_value of 0.75. According to TROPOMI — which is the only true observational dataset —
212 the Southwest U.S. has the most amount of clear-sky days per year (~80% of days at 13:30 local time), while the
213 interior Northeast U.S. and coastal Northwest has the fewest (~30% of days at 13:30 local time). The major U.S. city
214 with the most clear-sky days is Phoenix (79% of days), while the major U.S. city with the least clear-sky days is

215 Seattle (29% of days).

216  Annualized spatial cloud patterns are similar throughout the daylight hours with marginally more clear skies in the
217  morning hours especially in the eastern U.S (Figure S1). Despite this, clouds are often transient, and there are
218  opportunities to observe a clear sky measurement at a different hour of the day if the 13:30 observation is obstructed
219 by clouds. In Figure 2, we demonstrate that between 68% — 93% of days have a clear sky measurement during any

220 hour of the daytime as compared to the 33 — 69% range at 13:30.

WRF-Chem: Cloud-free at 13:30 WREF-Chem: Cloud-free any time between 7:00 — 19:00
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222 Figure 2. Percentage of days over the contiguous U.S. during 2019 with cloud fractions less than 0.5 as simulated by
223 WRF-Chem at various local times: (Left) 13:30, (Right) any time between 7:00 — 19:00.

224

225 3.2 Surface NOz: Clouds vs. No Clouds

226  We then link whether TROPOMI is observing a clear sky or not (i.e., qa_value > 0.75) to the daily in situ ground-
227  level NOz observations to determine how clouds are affecting surface NO2 concentrations (hereafter referred to as
228 surface NOz). In Figure 3, we show that surface NO2 at 13:30 local time is +12.9% larger (NMC = normalized mean
229 change) [-3.8% (10% percentile), +32.1% (90™ percentile)] on days with clouds at 13:30 compared to the annualized
230 13:30 average when all days of data are included. We also note the very strong correlation between the NO2 on cloudy
231 days and all days, which suggests that the presence of clouds drives a systematic change from the mean rather than a
232 random change. We next show that the NO: during the average of all days is +17.2% larger [-1.8%, +38.7%] than on
233 days with only clear skies. The +17.2% value is our estimate of the difference of annualized surface-based NO: at
234 13:30 on all days as compared to only clear sky days. We further show that surface NOz at 13:30 is +36.0% larger [—
235 6.1%, +72.9%] on days with clouds compared to days with clear skies.
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236
237 Figure 3. Scatterplots intercomparing annualized surface NO> from the EPA AQS at 13:30 local time during all days,

238 cloudy days, and no cloud days. (Left) Annualized surface NO: during cloudy days compared to annualized surface
239 NO:2 during all days. (Center) Annualized surface NO: during all days compared to annualized surface NO: during no
240 cloud days. (Right) Annualized surface NO> during cloudy days compared to annualized surface NO2 during no cloud.
241 A “cloudy” vs “no cloud” day is determined via the qa_value of 0.75 from the TROPOMI NO: v2.4 product.

242

243 The difference in surface NO: between cloudy and clear sky days can vary dramatically based on geographic region

244 and proximity to a major roadway (Table 1). For the purposes of the sensitivity study, we focus on the cloudy versus
245 no cloud days, while the directional changes of “cloudy versus all days” and “all days versus no clouds” values are

246 similar (Tables S1 & S2).

247 Table 1. Slope, 2, Normalized Mean Change (NMC), and number of sites of the “cloudy vs. no clouds” bias by
248 further filtering out AQS data using various additional sensitivity analyses. Tables S1 & S2 show the sensitivity
249 analyses for the “cloudy vs. all days” bias, and “all days vs. no clouds” bias respectively.

Normalized Mean | # sites of monitoring
Slope | r? Change (%) sites used
Baseline (V2.4) 1.20 | 0.85 +36.0% 374
V2.3.1 1.18 | 0.86 +40.4% 374
V2.4 higher cloud filter 1.25 | 0.83 +80.8% 373
V2.4 all sites 1.05 | 0.90 +32.7% 449
V2.4 near road only 0.89 | 0.84 +15.9% 76
V2.4 no chemiluminescence | 1.20 | 0.87 +53.1% 26
V2.4 Summer only 1.17 ] 0.86 +23.8% 366
V2.4 Winter only 1.14 | 0.82 +27.8% 373
V2.4 Spring only 1.28 | 0.88 +31.9% 364
V2.4 Fall only 1.07 | 0.77 +30.9% 359
V2.4 North only 1.31 | 0.89 +41.5% 217
V2.4 South only 0.98 | 0.82 +28.5% 157
V2.4 NorthEast only 1.36 | 0.93 +61.7% 106
V2.4 SouthEast only 1.27 1 0.94 +33.8% 73
V2.4 NorthWest only 1.12 | 0.88 +22.2% 111
V2.4 SouthWest only 091 |0.79 +23.9% 84
V2.4 lowPopDensity only 1.34 | 0.86 +36.3% 216
V2.4 highPopDensity only 1.13 | 0.76 +37.5% 167
V2.4 lowRoadDensity only | 1.19 | 0.82 +33.6% 216
V2.4 highRoadDensity only | 1.18 | 0.80 +40.8% 165
250
251
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252 First, we find that NO: during cloudy days is larger in the northern U.S. (+41.5%) than the southern U.S. (+28.5%)
253 and largest in the Northeast U.S (+61.7%) (Figure 4); for this analysis, 37°N is the dividing latitude between North
254 and South, 100°W is the dividing longitude between East and West. Although the calculated cloudy versus no cloud
255 change is independent of the number of days of clear-skies, areas of perpetually cloudy skies also have cooler
256  temperatures and shallower boundary layers which could cause much larger NO2 on cloudy days. Interestingly, the
257 Phoenix and Salt Lake City areas — two areas with large number of days with clear skies — also have a relatively large
258 difference between cloudy and clear sky days demonstrating that the bias in independent of the number of days with
259 clear skies. However, the annualized difference between cloudy and clear sky days in the Southwest U.S. is modest
260  (+4.8%) (Table S1) because there are fewer individual days affected by clouds. Approximately 13% of monitoring
261 sites, mostly concentrated in the Los Angeles and San Diego areas, have lower NO2 on cloudy days, and this may be
262 driven by enhanced westerly winds on cloudy days bringing in cleaner marine air more than offsetting the
263 photochemically driven larger NO:z on cloudy days. Overall, while there are a few locations with lower NO2 on cloudy
264 days, 87% of locations exhibit larger NO2 on cloudy days and this is driven by the slower photochemistry on these
265 days.

|| Q Clouds / No Clouds \ G
& EPA Monitors > > & EPA Monitors
. Surface NO, . Surface NO,
7 2019 1PM 7 2019 1IPM

| 1 ! ] Ratio NN ] ! ] Ratio
0.50 0.75 1.00 125 150 175 2.00 0.50 0.75 1.00 125 150 175 2.00

266
267 Figure 4. (Left) Ratio of the annualized surface NO during cloudy and no cloud days at the EPA AQS sites not

268  classified as “near-road”. (Right) Same image but with an inverse distance weighting underlaid to infer geographic
269  distribution of the ratio.

270

271 Proximity to roadways and large sources of NOx is another driver of whether a location will experience a small (but

272 larger) difference in NO2 on cloudy and clear sky days. For areas in close proximity to roadways (i.e., the near-road
273 sites) (n=76), the difference in NO2 between cloudy and clear sky days is weaker: a smaller positive change (+15.9%)
274 and only 77% of sites displaying a positive mean change, which is less than the difference at all other NO2 monitoring

275 locations (+36.0%).

276  We find that seasonal effects on the differences in NO2 between cloudy and clear days are modest. The NOz on cloudy
277 days in the Spring is largest and marginally smaller in other seasons. Other factors that were not associated with strong

278 changes to the differences in NO2 between cloudy and clear days bias are: the version of the TROPOMI NO; algorithm,
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279  whether the site was using a chemiluminescence or Cavity Attenuated Phase Shift measurement technique, and

280  population / roadway density within a 0.5° radius.

281
282 3.3 TROPOMI NO:z: Clouds versus No Clouds

283 We then compare TROPOMI NO: measurements under varying sky conditions. For this exercise, we filter the
284 TROPOMI NO:; data strictly based on cloud radiative fraction (crf). Although it is recommended for most applications
285  to use data when the crf <0.5, sometimes measurements are usable in the presence of optically thick clouds (i.e., crf
286  >0.5). In Figure 5, we average TROPOMI NO: measurements below and above a crf = 0.5 threshold to gain an
287  understanding of how TROPOMI column NO: measurements intercompare in the presence and lack of optically thick
288 clouds. In the figure we show the tropospheric vertical columns on the top row, and tropospheric slant columns in the
289  middle row, which have been interconverted using the tropospheric air mass factor shown on the bottom row. As
290  discussed in Section 2.2.1, the tropospheric air mass factor can be a large source of uncertainty when calculating

291 tropospheric vertical columns from slant columns (Glissenaar et al., 2025; S. Liu et al., 2021; Rijsdijk et al., 2025).

[ TROPOMI NO,
CRF <0.5

10" molec/cm* !
+ 2

0 1 2 3 4 8 16

..  TROPOMI NO,
%%L\Clouds /No clouds

7 _Slant column
Xy,

10" molec/cm®
0 1 2 3 4 8 16+

TROPOMI NO, |
Air Mass Factors
__CRF<05

TROPOMI NO, [
Air Mass Factors

CRF >0.5

NN L,
3 Air Mass Factor . Air Mass Factor
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292
293 Figure 5. (Left column) Annual 2019 TROPOMI NO: filtered using only a cloud radiative fraction (crf) filter less

294 than 0.5. (Center column) Annual 2019 TROPOMI NO: filtered using only a crf filter greater than 0.5. (Right column)
295 Ratio between the two annual averages. (Top row) Vertical tropospheric column NO: data. (Center row) Slant
296  tropospheric column NO: data. (Bottom row) Tropospheric air mass factors.

297

298
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299  In Figure 5, we demonstrate that the vertical column NOxz spatial patterns in the presence of clouds are much different
300 in magnitude than the slant column NOz whereas the vertical column NO: spatial patterns in the absence of clouds are
301 similar to the slant column NOz. As shown, this is primarily driven by the assumed tropospheric air mass factors.
302  During measurements when the crf >0.5 as compared to measurements when crf <0.5, the air mass factors are smaller
303 in magnitude. This is primarily because sensitivity to the surface concentrations is altered (lower) in the slant column
304 measurement in the presence of clouds. Also, during measurements when the crf >0.5, the uncertainty of the
305 TROPOMI vertical column measurements rises, and this is driven by the difficulty in calculating the air mass factor
306 in the presence of clouds; in addition to needing to know the vertical NO2 profile for its calculation, we also need to
307  know the pressure level and thickness of the clouds. Such errors can generate nonlinear responses. This analysis
308 confirms that the assumed air mass factor is the driving factor causing the differences in the tropospheric vertical
309 column NO:z between clear and cloudy sky days, as the slant tropospheric column NO: is smaller during cloudy skies
310 due to a lack of instrument sensitivity to the surface during cloudy conditions. Therefore special care should be used
311 when interpreting tropospheric satellite measurements in the presence of clouds.

312

313 Qualitatively, the ratio of the column NO2 with and without clouds is spatially similar to the ratio from the AQS
314  analysis — with the largest ratios occurring in the Northeast U.S and smallest ratios occurring in the Southwest U.S.
315 However, quantitatively, the column ratio observed by TROPOMI is much larger in magnitude in the eastern U.S.
316  than the surface ratio observed at the AQS surface sites. It is difficult to determine whether the quantitative magnitude

317 is correct because there are no ground-based instruments to accurately measure column NO: in the presence of clouds.
318 3.4 WRF-Chem NO:z: Clouds vs. No Clouds

319 We then compare the differences in NO2 between cloudy and clear days observed by the EPA AQS surface network
320  to the differences in NO2 between cloudy and clear days of surface NO2 simulated by WRF-Chem. The 13:30 local
321 time differences in NO2 between cloudy and clear days of surface NO2 in WRF-Chem (+58.7%) is substantially larger
322 than from the AQS observations (+36.0%) during collocations. This directional change is consistent among all

323 geographic regions suggesting that NO2 concentrations are too responsive to sunlight in WRF-Chem.

WRF-Chem: Surface NO,; 1 PM

EPA surface Network: Surface NO,; 1 PM at EPA monitoring locations
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324
325 Figure 6. Scatterplots intercomparing annualized surface NO: at 13:30 local time during cloudy days vs. no cloud

326 days. (Left) EPA AQS data which is a repeat of Figure 3c. (Right) WRF-Chem collocated with the AQS monitoring
327 sites, and using the WRF-Chem cloud filter in lieu of the TROPOMI cloud filter.
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328

329  There could be several reasons for this discrepancy. First, the NO2 + OH reaction is often the terminal sink for NO2
330 during daytime, and it is possible that OH concentrations in WRF-Chem are fluctuating too rapidly in the presence of
331 and lack of clouds (Duncan et al., 2024). Second, there might be insufficient NOz recycling of organic nitrates and/or
332 particulate nitrates in the model which could buffer photolysis-related changes; recent work has suggested that
333 particulate nitrate can meaningfully photolyze back to NO2 (Sarwar et al., 2024; Shah et al., 2024). Third, WRF-Chem
334 may not simulate PBL depth properly and may have different biases during cloudy and clear sky conditions (Hegarty
335 et al., 2018; Kuhn et al., 2024; X. Liu et al., 2023). For example if the predicted PBL is too shallow during cloudy
336  conditions, this could be a contributing factor to the simulated surface NO: bias. Errors in surface jNO2 do not appear
337  to be a primary driver of the cloudy versus clear sky disagreements as the jNOz values from WRF-Chem seem
338 reasonable as compared to UV-B measurements from the NOAA Surface Radiation Budget (SURFRAD) monitoring
339 network (Figure S3) and is consistent with other work showing small biases in jJNO2 in WRF-Chem (Ryu et al., 2018).
340 Follow-up work will address some of these shortcomings by adding particulate nitrate photolysis into the chemical
341 mechanism and evaluating PBL depths during cloudy conditions using ceilometers.

342
343
344  We can then use WRF-Chem as a transfer standard to suggest how column NO2 may change in relation to the surface

345 NOz, and we find that the relative change in column NO2 and surface NO: in response to clouds are very similar
346 (Figure 7). This makes intuitive sense because most NO2 over the contiguous U.S. is located within the boundary
347 layer, and typically clouds (if they exist) are located at the top of the boundary layer. So any sunlight obstructed by
348  clouds will also obstruct the NO2 both at the surface and in the full boundary layer.

WRF-Chem: Surface NO, 1 PM WRF-Chem: Column NO, 1 PM

WRFChem
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349
350 Figure 7. Ratio of the annualized surface NO: at 13:30 local time from WRF-Chem during cloudy and no cloud days.

351 (Left) Surface NO:z (Right) Tropospheric column NOx.
352
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3.5 Impacts of clouds on geostationary observations

Finally, we use provisional TEMPO NO: data and AQS NO: data from 2 August 2023 through 31 August 2024 to
understand how the changes of NO: during clear and cloudy conditions may be altered at different hours of the day.
Any hour in which there was high quality TEMPO NO: data was assumed to be “clear sky”, while all other days are
assumed to be cloudy. The threshold between high quality and lower quality data is a cloud radiative fraction =0.15,
which is more stringent than the TROPOMI recommendation. Hours with low solar zenith angles (before 8:00 and
after 16:00) have been excluded from this analysis. We find that the difference in surface NO2 between clear and

cloudy days is negligible in the early morning hours and increases throughout the day (Figure 8).
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Figure 8. Normalized mean percentage change in the surface NO2 during days with cloudy skies as opposed to days
with clear skies. Red dot shows the mean percentage change using TROPOMI clouds as shown in Figure 2¢. Black
line uses the same procedure for Aug 2023 — July 2024 data and TEMPO cloud data.

Surface AQS NO: at 8:30 local time is +6.3% larger on cloudy days than clear sky days, while at 15:30 it is +51.6%
larger. The calculated 13:30 difference in surface NO2 between cloudy and clear sky days using TEMPO (+25.9%) is
similar to the analogous value from TROPOMI (+36.0%). Differences between TEMPO and TROPOMI are expected
because the timeframes for the analyses are different (2019 for TROPOMI and 2023-2024 for TEMPO), and because
the cloud algorithms and cloud screening recommendations between the two instruments are different. The
recommended TEMPO cloud fraction threshold for high quality data is more stringent (crf=0.15) and therefore some
days with mostly clear skies are assumed to be “cloudy” in the TEMPO analysis. Therefore it is expected that the
normalized mean percentage change of the AQS NO: using TEMPO clouds is lower than the analogous value using

TROPOMI clouds since the theoretical difference between “clear” and “cloudy” days is less stark.
4 Discussion

In this project we quantify how NOxz satellite data could be biased in estimating annualized surface NO:
concentrations due to having high quality measurements only in the absence of clouds. We find that surface in situ
NO:2 measurements are on average +17% on all days compared to restricting to clear sky days and +36% larger

during cloudy days vs. clear sky days, with a wide distribution based on geographic region and proximity to
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381 roadway. Using the United States as a case study, we find the clear-sky bias to be largest in the Northeast U.S.;

382 conversely, the clear-sky bias is smallest in the Southwest U.S. and near major roadways. In some areas of the urban
383 Western U.S., Los Angeles and San Diego, we find that NO: is lower on cloudy days, but these instances are rare
384 (13% of monitoring sites) and are driven by unique transport patterns on cloudy days. Transport patterns are a

385 significant driver of the regional clear vs. cloudy sky differences of surface NO2 concentrations. Although the

386 analysis was computed for both TROPOMI and TEMPO data, it should be re-emphasized that the cloud algorithms
387  used by both instruments are different. However, the qualitative finding that surface NO2 differences between

388 cloudy and clear conditions tend to be larger in the afternoon than morning is consistent with a hypothesis that active

389  photochemistry during periods of stronger afternoon sunlight would cause this change.

390 This work also highlights how NO: concentrations are different on days when satellite instruments are not acquiring
391 a valid measurement. Our initial hypothesis of NO: being consistently larger on cloudy days was only partially

392 proven true. In many cases, surface NO2 concentrations and column NO: are larger, but this is not always the case.
393 This project demonstrates the balancing act of the reduced NO2+ OH sink and local climatological patterns (wind
394 speed/direction, PBL depth, etc.) driving surface NO2 during cloudy conditions. Although one of the original goals
395 of this study was to better gap-fill satellite tropospheric vertical column NO2 measurements in the presence of

396 clouds, ultimately, we were not comfortable doing this yet. Reliance on a model as a transfer standard to convert
397 surface concentrations into column concentrations exhibited too many biases under cloudy conditions. WRF-Chem
398 model simulations of surface NO: suggest that the clear-sky bias in WRF-Chem is on average much larger than the
399 observed clear-sky bias: +59% on cloudy days vs. clear days for the model, and +36% for the AQS data. We

400  hypothesized that errors in OH chemistry, NO2 recycling speeds, and PBL mixing depths could all be contributing to
401 this high bias. Future work should target these three research topics. Future work could also use a machine-learning

402  approach to account for some of these model biases.

403 Another consideration with the interpretation of satellite measurements is the impact of lightning NOx, wildfire

404  NOXx, and aircraft NOx emissions, mostly staying aloft, which could be misinterpreted as surface NO2

405 enhancements. While lightning NOx and wildfire NOx emissions are often screened out when applying a cloud filter
406 because they occur in optically thick clouds/smoke, it is possible for the NO2 to remain aloft for several days after
407  the initial thunderstorm/fire and be observed during clear skies. An algorithm to detect and screen out downwind
408 NO: attributed to upwind lightning NOx and wildfire NOx emissions could be especially helpful for subtropical and
409  tropical areas. At minimum, care should be taken during timeframes and regions where there are large pulses of

410  these types of emissions, such as our findings during summer.

411 These results have repercussions for many applied studies that use satellite data to estimate surface NO:

412 concentrations or NOx emissions. First, for studies that estimate surface concentrations, it is important to ingest
413 surface NO2 measurements during cloudy (and nighttime) conditions in some capacity in order to appropriately
414 estimate 24-hour concentrations; most studies already do this. If one were to use the clear-sky satellite data coupled

415  with only a chemical transport model as a transfer standard to convert the column measurement into a pseudo-
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416  surface “measurement”, this would underestimate annualized NO:z concentration in most places. Unfortunately, there
417 are many global regions with few or no surface measurements, so this is an important consideration when estimating
418 surface NO; in these regions. But even if one were to ingest surface NO2 during cloudy conditions, the spatial

419  patterns of surface NO: during cloudy conditions may be slightly different than implied by the clear-sky satellite
420 data. For example, we find that NO: surface concentrations under cloudy conditions are much larger in the Northeast

421 U.S. than the Southwest U.S., and a cloud-free satellite map does not capture this.

422 Second, for nitrogen oxide emissions estimates it is often assumed that anthropogenic emission rates are similar
423 under cloudy and clear-sky conditions, but this is likely not the case in reality. Although we show that surface NO2
424 concentrations are typically smaller under clear-skies, it is likely that anthropogenic NOx emissions are actually
425 larger under regionwide clear-skies during summer and winter due to the moderating impact of clouds on surface
426  temperature and subsequent impacts on heating-ventilation-air conditioning (HVAC) usage/emissions (Abel et al.,
427 2017). If we were able to better independently estimate tropospheric vertical column NOz during cloudy conditions,

428 perhaps this could be investigated in the future.

429 Lastly, as satellite-derived NO2 applications increase over the coming years, it is important to document its

430 successes and shortcomings. We see this project as a first-step towards better accounting for the clear-sky bias of
431 satellite NO» data. While future NO2 applications may use geostationary data, such as TEMPO, which may suffer
432 from a similar bias depending on the hour of the day, an advantage of geostationary satellite data is the ability to use
433 multiple measurements per day before and just after the clouds. It might be possible to isolate a two-hour window
434 (one with a cloud and one without) to get a better handle on the instantaneous versus long-term role of clouds

435 affecting NO2 concentrations.

436 This work also highlights the critical role that chemical transport models can play in satellite NO2 applications.

437 Errors in the model assumptions can hamstring many NO: applications. For example, using a model to infer NO2
438 during cloudy conditions in the lack of clear-sky satellite data would yield significant errors. Therefore, future work
439 should concurrently focus on acquiring and using sub-orbital measurements to diagnose errors related in simulating

440  NO:z in chemical transport models, so that they can be used as more robust transfer standards.
441

442
443
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444  Data availability. TROPOMI NO: version 2.4 data (http://doi.org/10.5270/S5P-9bnp8g8) processed to 0.01° x
445 0.01° resolution (http://doi.org/10.5067/MKJG22GUOD34) and TEMPO NO: version 3 data
446 (http://doi.org/10.5067/1S-40e/TEMPO/NO2 1.3.003) can be freely downloaded from NASA Earthdata. EPA AQS

447 surface NO: data can be downloaded from pre-generated files:

448 https://ags.epa.gov/agsweb/airdata/download _files.html. ERAS re-analysis hourly data on single levels
449 (http://doi.org/10.24381/cds.adbb2d47) can be downloaded from Copernicus Climate Data Store

450 (https://cds.climate.copernicus.eu/#!/home). NOAA SURFAD data can be downloaded from:

451 https://gml.noaa.gov/grad/surfrad/sitepage.html . Output from the WRF-Chem simulation is available upon request.

452 IDL code to process the data is available upon request.
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