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Abstract  12 

Satellite measurements of tropospheric trace gases are often only used when there are few clouds, which screens out 13 

20 – 70% of the data, depending on geographic region. While the lack of high-quality column measurements during 14 

cloudy conditions precludes validation of the satellite data, in situ surface measurements and model simulations can 15 

provide insight on the quantitative understanding of NO2 during cloudy conditions. Here, we intercompare surface 16 

observations, satellite measurements, and models during 2019 over the contiguous U.S. to quantify how NO2 17 

concentrations are different under clear and cloudy skies. We find that in situ surface NO2 measurements are, on 18 

average, +17% larger on all days compared to restricting to clear sky days and +36% larger during cloudy days 19 

versus clear sky days, with a wide distribution based on geographic region and roadway proximity: largest in the 20 

Northeast U.S. and smallest in the Southwest U.S. and near major roadways. WRF-Chem simulated surface NO2 21 

between cloudy and clear conditions is on average much larger than the observed differences: +59% on cloudy days 22 

vs. clear days for the model. This suggests that NO2 in WRF-Chem is more responsive to sunlight and associated 23 

photochemistry than in reality. Finally, using in situ NO2 matched to provisional TEMPO data, we find the NO2 24 

differences between cloudy and clear conditions to be larger in the afternoon than morning. This study quantifies 25 

some of the biases in satellite measurements introduced by using only clear-sky data, and introduces some 26 

corrections to account for these biases.  27 
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1 Introduction 28 

Nitrogen dioxide (NO2) is an air pollutant that adversely affects the human respiratory system (Health Effects Institute, 29 

2022; Khreis et al., 2017) and can lead to premature mortality (Burnett et al., 2004; M. Z. He et al., 2020). NO2 is also 30 

an important precursor for ozone (O3) and fine particulates (PM2.5), which also have serious health impacts. In urban 31 

areas, the majority of ambient NO2 originates from local NOx emissions (=NO+NO2; most NOx is emitted as NO 32 

which rapidly cycles to NO2) during high-temperature fossil fuel combustion (Crippa et al., 2021). Although end-of-33 

pipe controls (Busca et al., 1998; Koltsakis & Stamatelos, 1997) can reduce the amount of NOx emitted from engines 34 

and boilers, these technologies do not recover 100% of the NOx generation during combustion. As a consequence, 35 

NO2 accumulates in our atmosphere and many urban areas have NO2 concentrations that exceed the World Health 36 

Organization guideline of 5.3 ppb for an annual average (Anenberg et al., 2022). 37 

Observing local air pollution is typically done by in situ surface monitors, which are spaced throughout a region with 38 

a higher density of monitors typically in areas of high population density and known pollution sources. In the United 39 

States, there are 1012 in situ monitoring sites measuring some combination of O3, PM2.5, NO2, volatile organic 40 

compounds (VOCs), and CO (https://www.epa.gov/aqs). While the U.S. monitoring network is more comprehensive 41 

than most other countries (Martin et al., 2019), 79% of U.S. counties lack a single monitor and an additional 10% of 42 

counties have only a single monitor, leaving only 11% of U.S. counties with more than 1 monitor (Sullivan & 43 

Krupnick, 2018). Although a robust and accurate ground-monitoring network is needed, the high operating cost of 44 

these instruments can be an important barrier (Kelly et al., 2017). Spatial gaps remain in-between the regulatory 45 

monitors, and sometimes these monitors are inadequate for understanding the true ambient air pollution exposure of 46 

most U.S. residents, especially those that live and/or work several miles away from a regulatory monitor. Satellite data 47 

provide a way to fill in the gaps of the in situ monitoring network. Methodologies to obtain robust surface air pollutant 48 

measurement data from satellite instruments have improved dramatically in the past ten years (Bechle et al., 2015; 49 

Larkin et al., 2023; Nawaz et al., 2025; Shetty et al., 2024; W. Sun et al., 2024). 50 

NO2 can be observed by remote sensing instruments due to its unique spectroscopic features (Vandaele et al., 1998). 51 

The Tropospheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012) has been measuring column amounts 52 

of NO2 pollution at ~5.5 × 3.5 km2 spatial resolution (van Geffen, 2016) since 30 April 2018. Because of TROPOMI’s 53 

higher spatial resolution over predecessor instruments, such as the Ozone Monitoring Instrument (OMI) (24 × 13 km2 54 

at nadir) (Levelt et al., 2018), TROPOMI has ~50 daily satellite pixel measurements within a typical city (~1000 km2) 55 

during clear skies, while OMI may have only 1-3 daily measurements within the borders of each city. This increased 56 

measurement capacity within a city allows us to discern spatial variability undetectable by previous instruments. 57 

Further, the data from the satellite instruments can be downscaled using a process called oversampling (de Foy et al., 58 

2009; K. Sun et al., 2018), which re-grids the irregular satellite pixels to a standard and higher spatial resolution. The 59 

spatial resolution is thus effectively increased at the expense of the temporal resolution.  60 

NO2 satellite measurements are of the tropospheric column. In many cases, NO2 column measurements are strongly 61 

correlated with the spatial patterns of surface NO2 concentrations (Acker et al., 2025; Harkey & Holloway, 2024; Kim 62 
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et al., 2024) and surface NOx emissions (Goldberg et al., 2024). For TROPOMI, studies have shown a strong 63 

correlation between tropospheric column measurements and collocated surface NO2 for both the 13:30 average (r2 = 64 

0.67) and the 24-hour average (r2 = 0.68) (Goldberg et al., 2021; Kerr et al., 2023). However, there are rare instances 65 

in which NOx emissions and NO2 enhancements stay aloft and do not affect the surface; these are often situations 66 

associated with lightning NOx (Nault et al., 2017), wildfire NOx (Jin et al., 2021; Lin et al., 2024), and aircraft NOx 67 

(Maruhashi et al., 2024). In these instances, it can be difficult to determine if the column NO2 enhancements are also 68 

leading to surface NO2 enhancements. These misinterpretations are more likely to occur over rural regions and/or 69 

individual days, as upper-tropospheric NO2 enhancements near urban regions often dwarf NO2 enhancements within 70 

the boundary layer especially over monthly or longer timescales (Goldberg et al., 2022).  71 

Satellite measurements of trace gases are typically only used when there are few or no clouds; this is often referred 72 

to as the clear-sky bias of satellite data. This results in 20 – 70% of the satellite data being filtered out depending on 73 

geographic region. The clear-sky bias affects NO2 moreso than other trace gases (such as CO and CH4) because NO2 74 

is very photochemically active in the presence of strong sunlight; its effective lifetime during summer daytime is 2 – 75 

7 hours (F. Liu et al., 2016) and conversely can be up to 30 hours during winter daytime (Kenagy et al., 2018). The 76 

speed at which it transforms into other chemical species is determined by the strength of sunlight, ambient 77 

temperature, and oxidation environment (Laughner & Cohen, 2019; Shah et al., 2020). More specifically, NO2 can 78 

react with OH to create HNO3 (which is usually considered a terminal sink), NO2 can photolyze and facilitate the 79 

formation of O3 in the presence of volatile organic compounds, and NO2 can react with VOCs to create organic 80 

nitrates (e.g., peroxyacetyl nitrates and alkyl nitrates) (Zare et al., 2018) with the latter two being temporary sinks of 81 

NO2. Another daytime terminal sink for NO2 is dry deposition; while this removal mechanism is often secondary to 82 

photochemical loss in urban environments and is not directly affected by sunlight, it is indirectly affected as cloudy 83 

conditions are often associated with increased relative humidity and shallower boundary layer depths, both of which 84 

increase dry deposition. Therefore, increased NO2 dry deposition in cloudy conditions could offset some of the 85 

decreased NO2 photochemical loss rates. The net result is that NO2 concentrations are typically larger during cloudy 86 

conditions (Geddes et al., 2012). 87 

However, outside of the Geddes et al. (2012) study, little has been done to observationally quantify the bias of NO2 88 

being larger during cloudy conditions particularly because there are no column measurements to validate the satellite 89 

during cloudy conditions. With that said, there are surface in situ measurements during cloudy conditions that can 90 

give us an idea of how the clear-sky bias may affect the estimate of surface concentrations. In this project, we 91 

intercompare surface observations, satellite measurements, and models under clear and cloudy skies to better 92 

quantify the amount of surface bias of NO2 concentrations that is being introduced when clouds are screened from 93 

the satellite data. Our analysis is focused on the United States during 2019 due the high density of in situ monitors 94 

and availability of high-resolution regional chemical transport models. The motivation of this project is two-fold: 1) 95 

to determine what the scientific community may be missing when excluding clouds from satellite-based NO2 96 

analyses and 2) to understand how geostationary NO2 satellite measurements may be affected by such a bias and 97 

potentially partially remediate such a bias.  98 
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2 Methods 99 

2.1 EPA AQS Data 100 

Hourly in situ NO2 measurements were obtained from the pre-generated EPA Air Quality System (AQS) database: 101 

https://aqs.epa.gov/aqsweb/airdata/download_files.html. These routine measurements are operated and maintained by 102 

various state and federal agencies. 91% of the “NO2” measurements in 2019 were acquired through a 103 

chemiluminescence technique which converts NO2 and a small amount of NOy species – such as alkyl nitrates, 104 

peroxynitrates, and nitric acid – to NO using a heated molybdenum converter, and the NO is measured by quantifying 105 

the luminesce of NO when reacted in excess O3 (Dickerson et al., 2019). Other methods to measure in situ NO2 include 106 

Cavity Attenuated Phase Shift (Kebabian et al., 2008) and Laser Induced Fluorescence (Thornton et al., 2000), but 107 

these methods are less common (9% of all NO2 monitors in 2019) and more expensive to operate and maintain. Annual 108 

and seasonal averages at 13:30 local standard time (between 13:00 – 14:00) of the in situ data were considered valid 109 

and used if more than 75% of the days of the year/season had valid data. There were 449 monitoring locations in 2019 110 

in the U.S. that achieved these criteria for an annual average, which equates to 1 monitor per ~730,000 U.S. residents. 111 

For the baseline analysis, we further remove data from the 75 monitoring locations (17% of the locations) that are 112 

classified as “near-road” by the EPA, which means that they are installed within 20 m from major interstates since 113 

these in situ measurements are not representative of a ~20 km2 satellite pixel measurement; we include the “near-114 

road” NO2 monitoring data in sensitivity analyses. NO2 measurements between cloudy and clear-sky days are 115 

intercompared using the normalized mean change (NMC) as described in Equation 1, where 𝑥̅ and 𝑦$ are means of the 116 

two datasets being analyzed. 117 

𝑁𝑀𝐶(%) = 100 × /!"#$̅
$̅
0      (1) 118 

2.2 Satellite NO2 Instruments 119 

NO2 slant column densities are derived from radiance measurements in the 405 – 465 nm spectral window of the UV-120 

VIS-NIR spectrometer (van Geffen et al., 2021). Satellite instruments observe NO2 by comparing observed spectra 121 

with a reference spectrum to derive the amount of NO2 in the atmosphere between the instrument and the surface; this 122 

technique is called differential optical absorption spectroscopy (DOAS) (Platt, 1994). Tropospheric vertical column 123 

density data, which represent the vertically integrated number of NO2 molecules per unit area between the surface and 124 

the tropopause, are then calculated by subtracting the stratospheric portion and then converting the tropospheric slant 125 

column to a vertical column using an air mass factor (AMF) (Boersma et al., 2011). The AMF is a unitless quantity 126 

used to convert the slant column into a vertical column and is a function of the satellite viewing angles, solar angles, 127 
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the effective cloud radiance fraction and pressure, the vertical profile shape of NO2 provided by a chemical transport 128 

model simulation, and the surface reflectivity (Lorente et al., 2017; Palmer et al., 2001).  129 

2.2.1 TROPOMI 130 

TROPOMI was launched by the European Space Agency (ESA) on 13 October 2017, and data from the instrument 131 

became available on 30 April 2018, after an approximately 6-month calibration period. The satellite follows a sun-132 

synchronous, low-earth (825 km) orbit with an equator overpass time of approximately 13:30 local solar time. 133 

TROPOMI measures total column amounts of several trace gases: NO2, HCHO, O3, CO, CH4, among others. At nadir, 134 

pixel sizes are 3.5 × 7 km2 (modified to 3.5 × 5.5 km2 on August 6, 2019) with the edges having slightly larger pixels 135 

sizes (~14 km wide) across a 2600 km swath, equating to 450 rows (van Geffen et al., 2020).  136 

For our analysis we use the TROPOMI NO2 version 2.4 (v2.4) re-processed algorithm during Jan 1, 2019 – Dec 31, 137 

2019. The TROPOMI NO2 v2.4 product has a documented median low bias of -34.8% in moderately polluted locations 138 

(when NO2 measurements are between 3 – 14 x 1015 molec/cm2) when compared to a MAX-DOAS network (Lambert 139 

et al., 2023). Prior work has demonstrated a strong correlation between TROPOMI NO2 column measurements and 140 

NO2 surface concentrations in urban areas (Demetillo et al., 2020; Dressel et al., 2022; Goldberg et al., 2021; Nawaz 141 

et al., 2025). For our baseline, we screened TROPOMI pixels for quality assurance flag values greater than 0.75, and 142 

conduct a sensitivity analysis of filtering only with a cloud radiative fraction filter of 0.5. The cloud radiative fraction 143 

is calculated from the O2 A-band using the FRESCO-S algorithm. Due to differences in wavelength between the O2 144 

A-band and the NO2 retrieval window, the cloud fraction retrieved in the O2 A-band is not exactly representative for 145 

the cloud fraction in the NO2 window, but it is similar. 146 

The filtered data were re-gridded to a 0.01° × 0.01° resolution, to create a custom “Level-3” data product (Goldberg 147 

et al., 2021) during cloud-free and cloudy conditions. Single pixel TROPOMI tropospheric vertical column NO2 148 

uncertainties have been quantified to be between 25 – 50% under clear skies and this uncertainty is dominated by 149 

uncertainty in the tropospheric air mass factor (Glissenaar et al., 2025; S. Liu et al., 2021; Rijsdijk et al., 2025); 150 

uncertainties of measurements with cloud fractions > 0.5 are larger. Oversampled NO2 measurements over monthly 151 

and annual timeframes (10s - 100s of measurements) have a smaller amount of uncertainty, approximately 10 – 20 % 152 

depending on location and season (Glissenaar et al., 2025) . 153 

2.2.2 TEMPO 154 

TEMPO was launched by SpaceX on 7 April 2023 and is hosted on Maxar Intelsat 40e. Data from the instrument 155 

became available on 2 August 2023, after an approximately 4-month dry-out, cool-down, and calibration period. The 156 

satellite is in geostationary orbit centered over the United States with north-south coverage extending from Mexico to 157 

southern Canada and east-west coverage from Puerto Rico to the Pacific coast. TEMPO operationally measures total 158 

column amounts of NO2, HCHO, and O3 with additional products forthcoming. At nadir, pixel sizes are 4.75 × 2 km2 159 
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with the North-east and North-west edges having slightly larger pixels sizes. The instrument observes the full east-160 

west swath approximately once every hour. 161 

For our analysis we use the TEMPO NO2 version 3 algorithm during 2 Aug 2023 – 31 Aug 2024. The data was filtered 162 

to include pixels only where the effective cloud fractions are less than 0.15 and the main data quality flags are equal 163 

to 0. The filtered data was re-gridded to a 0.01° × 0.01° resolution, to create a custom “Level-3” data product (Goldberg 164 

et al., 2021) during cloud-free and cloudy conditions. Single pixel TEMPO tropospheric vertical column NO2 165 

uncertainties can be assumed to be similar to the uncertainty of TROPOMI measurements (Glissenaar et al., 2025), 166 

which are between 25 – 50% under clear skies for individual pixels, and 10 – 20% for oversampled averages; future 167 

work will better quantify the uncertainties of TEMPO NO2 measurements.   168 

2.3 ERA5 Re-analysis 169 

We intercompare the cloud radiative fractions from TROPOMI to the ERA5 re-analysis (Hersbach et al., 2020) of 170 

total cloud fractions in the early afternoon (18Z for Eastern Time, 19Z for Central Time, 20Z for Mountain Time, 21Z 171 

for Pacific Time), which approximates the overpass time of TROPOMI over the contiguous United States. The ERA5 172 

total cloud fraction is a unitless quantity representing how much of a grid cell is covered by a cloud (e.g., condensed 173 

water vapor) at any vertical level of the atmosphere and does not differentiate between the optical properties of those 174 

clouds. The ERA5 re-analysis data are reported at a 0.25° × 0.25° spatial resolution and the cloud fractions are 175 

interpolated, using bilinear interpolation, to the 0.01° × 0.01° oversampled TROPOMI NO2 grid. 176 

2.4 WRF-Chem 177 

The Weather Research and Forecasting with Chemistry (WRF-Chem) model was run at 12 km × 12 km over the 178 

Continental U.S. for all days of 2019: 1 January 2019 – 31 December 2019 as described in He et al. (2024). For 179 

anthropogenic emissions, the Fuel-based Inventory of Vehicle Emissions (FIVE) was used to provide on-road and off-180 

road mobile emissions, the Fuel-based Oil and Gas (FOG) inventory was used for emissions associated with oil and 181 

natural gas production, power plant emissions were provided by Continuous Emissions Monitoring Systems (CEMS), 182 

and all other anthropogenic emissions were obtained from the 2014 or 2017 National Emissions Inventory (NEI). 183 

Biogenic emissions were estimated using Biogenic Emissions Inventory System (BEIS) version 3.13. Gas-phase 184 

chemistry was from the RACM_ESRL_VCP scheme. Boundary conditions were provided from the Realtime Air 185 

Quality Modeling System (RAQMS, http://raqms-ops.ssec.wisc.edu/) developed by the University of Wisconsin-186 

Madison.  The cloud fractions used in this project are from the total cloud fraction “CLDFRA” variable. 187 
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3 Results 188 

3.1 CONUS Cloud Patterns 189 

We first conduct an analysis of cloud patterns across the contiguous United States, and inter-compare clear-sky days 190 

estimated by TROPOMI, the ERA5 re-analysis, and the WRF-Chem model (Figure 1). For TROPOMI, we define 191 

clear skies as the percentage of days with qa_value > 0.75, which almost exclusively filters based on cloud fractions 192 

<0.5; cloud-free snow-covered scenes typically have a qa_value > 0.75 (Eskes et al., 2022). For ERA5 and WRF-193 

Chem, we define clear skies as the percentage of days with the total cloud fractions <0.5. ERA5 and WRF-Chem 194 

have similar clear-sky spatial patterns as TROPOMI but show systematically lower amounts of clear-skies by 8%. 195 

The small systematic difference between TROPOMI and ERA5 when filtering for cloud fractions at 13:30 is likely 196 

driven by how optically thin cirrus-like clouds are handled; for TROPOMI these are being observed based on optical 197 

properties and therefore optically thin clouds are not assumed to be a cloud, whereas in weather models (ERA5 and 198 

WRF-Chem) these are being computed as vertical layers in the atmosphere with condensed water vapor. Overall, 199 

there is very strong agreement between the three datasets in the estimation of clouds giving us confidence that 200 

TROPOMI, ERA5, and WRF-Chem are all good estimators of daily clear-sky amounts.  201 

 202 
Figure 1. Percentage of clear-sky days over the contiguous U.S. during 2019 from the TROPOMI NO2 v2.4 203 
product, ERA5 re-analysis, and WRF-Chem. (Top left) Normalized frequency diagram of the binned percentage of 204 
clear sky days for the three products. (Top right) Percentage of days in which the qa_value of the TROPOMI NO2 205 
v2.4 measurement was greater than 0.75. (Bottom left) Percentage of days in which the total cloud cover (tcc) from 206 
the ERA5 was less than 0.5. (Bottom right) Percentage of days in each grid cell in which the total cloud fraction 207 
from the WRF-Chem was less than 0.5 208 

  209 
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For the remainder of this project, we define “clear sky” based on the TROPOMI NO2 retrieval and use days with 210 

observations exceeding a qa_value of 0.75. According to TROPOMI – which is the only true observational dataset – 211 

the Southwest U.S. has the most amount of clear-sky days per year (~80% of days at 13:30 local time), while the 212 

interior Northeast U.S. and coastal Northwest has the fewest (~30% of days at 13:30 local time). The major U.S. city 213 

with the most clear-sky days is Phoenix (79% of days), while the major U.S. city with the least clear-sky days is 214 

Seattle (29% of days). 215 

Annualized spatial cloud patterns are similar throughout the daylight hours with marginally more clear skies in the 216 

morning hours especially in the eastern U.S (Figure S1). Despite this, clouds are often transient, and there are 217 

opportunities to observe a clear sky measurement at a different hour of the day if the 13:30 observation is obstructed 218 

by clouds. In Figure 2, we demonstrate that between 68% – 93% of days have a clear sky measurement during any 219 

hour of the daytime as compared to the 33 – 69% range at 13:30.  220 

 221 
Figure 2. Percentage of days over the contiguous U.S. during 2019 with cloud fractions less than 0.5 as simulated by 222 
WRF-Chem at various local times: (Left) 13:30, (Right) any time between 7:00 – 19:00. 223 
 224 
3.2 Surface NO2: Clouds vs. No Clouds  225 

We then link whether TROPOMI is observing a clear sky or not (i.e., qa_value > 0.75) to the daily in situ ground-226 

level NO2 observations to determine how clouds are affecting surface NO2 concentrations (hereafter referred to as 227 

surface NO2). In Figure 3, we show that surface NO2 at 13:30 local time is +12.9% larger (NMC = normalized mean 228 

change) [–3.8% (10th percentile), +32.1% (90th percentile)] on days with clouds at 13:30 compared to the annualized 229 

13:30 average when all days of data are included. We also note the very strong correlation between the NO2 on cloudy 230 

days and all days, which suggests that the presence of clouds drives a systematic change from the mean rather than a 231 

random change. We next show that the NO2 during the average of all days is +17.2% larger [–1.8%, +38.7%] than on 232 

days with only clear skies. The +17.2% value is our estimate of the difference of annualized surface-based NO2 at 233 

13:30 on all days as compared to only clear sky days. We further show that surface NO2 at 13:30 is +36.0% larger [–234 

6.1%, +72.9%] on days with clouds compared to days with clear skies. 235 
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 236 
Figure 3. Scatterplots intercomparing annualized surface NO2 from the EPA AQS at 13:30 local time during all days, 237 
cloudy days, and no cloud days. (Left) Annualized surface NO2 during cloudy days compared to annualized surface 238 
NO2 during all days. (Center) Annualized surface NO2 during all days compared to annualized surface NO2 during no 239 
cloud days. (Right) Annualized surface NO2 during cloudy days compared to annualized surface NO2 during no cloud. 240 
A “cloudy” vs “no cloud” day is determined via the qa_value of 0.75 from the TROPOMI NO2 v2.4 product.  241 
 242 
The difference in surface NO2 between cloudy and clear sky days can vary dramatically based on geographic region 243 

and proximity to a major roadway (Table 1). For the purposes of the sensitivity study, we focus on the cloudy versus 244 

no cloud days, while the directional changes of “cloudy versus all days” and “all days versus no clouds” values are 245 

similar (Tables S1 & S2).  246 

Table 1. Slope, r2, Normalized Mean Change (NMC), and number of sites of the “cloudy vs. no clouds” bias by 247 
further filtering out AQS data using various additional sensitivity analyses. Tables S1 & S2 show the sensitivity 248 
analyses for the “cloudy vs. all days” bias, and “all days vs. no clouds” bias respectively. 249 

 Slope r2 
Normalized Mean 

Change (%) 
# sites of monitoring 

sites used 
Baseline (V2.4) 1.20 0.85 +36.0% 374 

V2.3.1 1.18 0.86 +40.4% 374 
V2.4 higher cloud filter 1.25 0.83 +80.8% 373 

V2.4 all sites 1.05 0.90 +32.7% 449 
V2.4 near road only 0.89 0.84 +15.9% 76 

V2.4 no chemiluminescence 1.20 0.87 +53.1% 26 
V2.4 Summer only 1.17 0.86 +23.8% 366 
V2.4 Winter only 1.14 0.82 +27.8% 373 
V2.4 Spring only 1.28 0.88 +31.9% 364 

V2.4 Fall only 1.07 0.77 +30.9% 359 
V2.4 North only 1.31 0.89 +41.5% 217 
V2.4 South only 0.98 0.82 +28.5% 157 

V2.4 NorthEast only 1.36 0.93 +61.7% 106 
V2.4 SouthEast only 1.27 0.94 +33.8% 73 
V2.4 NorthWest only 1.12 0.88 +22.2% 111 
V2.4 SouthWest only 0.91 0.79 +23.9% 84 

V2.4 lowPopDensity only 1.34 0.86 +36.3% 216 
V2.4 highPopDensity only 1.13 0.76 +37.5% 167 
V2.4 lowRoadDensity only 1.19 0.82 +33.6% 216 
V2.4 highRoadDensity only 1.18 0.80 +40.8% 165 

 250 
 251 
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First, we find that NO2 during cloudy days is larger in the northern U.S. (+41.5%) than the southern U.S. (+28.5%) 252 

and largest in the Northeast U.S (+61.7%) (Figure 4); for this analysis, 37°N is the dividing latitude between North 253 

and South, 100°W is the dividing longitude between East and West. Although the calculated cloudy versus no cloud 254 

change is independent of the number of days of clear-skies, areas of perpetually cloudy skies also have cooler 255 

temperatures and shallower boundary layers which could cause much larger NO2 on cloudy days. Interestingly, the 256 

Phoenix and Salt Lake City areas – two areas with large number of days with clear skies – also have a relatively large 257 

difference between cloudy and clear sky days demonstrating that the bias in independent of the number of days with 258 

clear skies. However, the annualized difference between cloudy and clear sky days in the Southwest U.S. is modest 259 

(+4.8%) (Table S1) because there are fewer individual days affected by clouds. Approximately 13% of monitoring 260 

sites, mostly concentrated in the Los Angeles and San Diego areas, have lower NO2 on cloudy days, and this may be 261 

driven by enhanced westerly winds on cloudy days bringing in cleaner marine air more than offsetting the 262 

photochemically driven larger NO2 on cloudy days. Overall, while there are a few locations with lower NO2 on cloudy 263 

days, 87% of locations exhibit larger NO2 on cloudy days and this is driven by the slower photochemistry on these 264 

days. 265 

 266 
Figure 4. (Left) Ratio of the annualized surface NO2 during cloudy and no cloud days at the EPA AQS sites not 267 
classified as “near-road”. (Right) Same image but with an inverse distance weighting underlaid to infer geographic 268 
distribution of the ratio. 269 
 270 
Proximity to roadways and large sources of NOx is another driver of whether a location will experience a small (but 271 

larger) difference in NO2 on cloudy and clear sky days. For areas in close proximity to roadways (i.e., the near-road 272 

sites) (n=76), the difference in NO2 between cloudy and clear sky days is weaker: a smaller positive change (+15.9%) 273 

and only 77% of sites displaying a positive mean change, which is less than the difference at all other NO2 monitoring 274 

locations (+36.0%).  275 

We find that seasonal effects on the differences in NO2 between cloudy and clear days are modest. The NO2 on cloudy 276 

days in the Spring is largest and marginally smaller in other seasons. Other factors that were not associated with strong 277 

changes to the differences in NO2 between cloudy and clear days bias are: the version of the TROPOMI NO2 algorithm, 278 
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whether the site was using a chemiluminescence or Cavity Attenuated Phase Shift measurement technique, and 279 

population / roadway density within a 0.5° radius.   280 

 281 
3.3 TROPOMI NO2: Clouds versus No Clouds 282 

We then compare TROPOMI NO2 measurements under varying sky conditions. For this exercise, we filter the 283 

TROPOMI NO2 data strictly based on cloud radiative fraction (crf). Although it is recommended for most applications 284 

to use data when the crf <0.5, sometimes measurements are usable in the presence of optically thick clouds (i.e., crf  285 

>0.5). In Figure 5, we average TROPOMI NO2 measurements below and above a crf = 0.5 threshold to gain an 286 

understanding of how TROPOMI column NO2 measurements intercompare in the presence and lack of optically thick 287 

clouds. In the figure we show the tropospheric vertical columns on the top row, and tropospheric slant columns in the 288 

middle row, which have been interconverted using the tropospheric air mass factor shown on the bottom row. As 289 

discussed in Section 2.2.1, the tropospheric air mass factor can be a large source of uncertainty when calculating 290 

tropospheric vertical columns from slant columns (Glissenaar et al., 2025; S. Liu et al., 2021; Rijsdijk et al., 2025). 291 

 292 
Figure 5. (Left column) Annual 2019 TROPOMI NO2 filtered using only a cloud radiative fraction (crf) filter less 293 
than 0.5. (Center column) Annual 2019 TROPOMI NO2 filtered using only a crf filter greater than 0.5. (Right column) 294 
Ratio between the two annual averages. (Top row) Vertical tropospheric column NO2 data. (Center row) Slant 295 
tropospheric column NO2 data. (Bottom row) Tropospheric air mass factors. 296 
 297 
 298 
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In Figure 5, we demonstrate that the vertical column NO2 spatial patterns in the presence of clouds are much different 299 

in magnitude than the slant column NO2 whereas the vertical column NO2 spatial patterns in the absence of clouds are 300 

similar to the slant column NO2. As shown, this is primarily driven by the assumed tropospheric air mass factors. 301 

During measurements when the crf  >0.5 as compared to measurements when crf <0.5, the air mass factors are smaller 302 

in magnitude. This is primarily because sensitivity to the surface concentrations is altered (lower) in the slant column 303 

measurement in the presence of clouds. Also, during measurements when the crf  >0.5, the uncertainty of the 304 

TROPOMI vertical column measurements rises, and this is driven by the difficulty in calculating the air mass factor 305 

in the presence of clouds; in addition to needing to know the vertical NO2 profile for its calculation, we also need to 306 

know the pressure level and thickness of the clouds. Such errors can generate nonlinear responses. This analysis 307 

confirms that the assumed air mass factor is the driving factor causing the differences in the tropospheric vertical 308 

column NO2 between clear and cloudy sky days, as the slant tropospheric column NO2 is smaller during cloudy skies 309 

due to a lack of instrument sensitivity to the surface during cloudy conditions. Therefore special care should be used 310 

when interpreting tropospheric satellite measurements in the presence of clouds. 311 

 312 

Qualitatively, the ratio of the column NO2 with and without clouds is spatially similar to the ratio from the AQS 313 

analysis – with the largest ratios occurring in the Northeast U.S and smallest ratios occurring in the Southwest U.S. 314 

However, quantitatively, the column ratio observed by TROPOMI is much larger in magnitude in the eastern U.S. 315 

than the surface ratio observed at the AQS surface sites. It is difficult to determine whether the quantitative magnitude 316 

is correct because there are no ground-based instruments to accurately measure column NO2 in the presence of clouds.  317 

3.4 WRF-Chem NO2: Clouds vs. No Clouds 318 

We then compare the differences in NO2 between cloudy and clear days observed by the EPA AQS surface network 319 

to the differences in NO2 between cloudy and clear days of surface NO2 simulated by WRF-Chem. The 13:30 local 320 

time differences in NO2 between cloudy and clear days of surface NO2 in WRF-Chem (+58.7%) is substantially larger 321 

than from the AQS observations (+36.0%) during collocations. This directional change is consistent among all 322 

geographic regions suggesting that NO2 concentrations are too responsive to sunlight in WRF-Chem.  323 

 324 
Figure 6. Scatterplots intercomparing annualized surface NO2 at 13:30 local time during cloudy days vs. no cloud 325 
days. (Left) EPA AQS data which is a repeat of Figure 3c. (Right) WRF-Chem collocated with the AQS monitoring 326 
sites, and using the WRF-Chem cloud filter in lieu of the TROPOMI cloud filter.  327 
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 328 

There could be several reasons for this discrepancy. First, the NO2 + OH reaction is often the terminal sink for NO2 329 

during daytime, and it is possible that OH concentrations in WRF-Chem are fluctuating too rapidly in the presence of 330 

and lack of clouds (Duncan et al., 2024). Second, there might be insufficient NO2 recycling of organic nitrates and/or 331 

particulate nitrates in the model which could buffer photolysis-related changes; recent work has suggested that 332 

particulate nitrate can meaningfully photolyze back to NO2 (Sarwar et al., 2024; Shah et al., 2024). Third, WRF-Chem 333 

may not simulate PBL depth properly and may have different biases during cloudy and clear sky conditions (Hegarty 334 

et al., 2018; Kuhn et al., 2024; X. Liu et al., 2023). For example if the predicted PBL is too shallow during cloudy 335 

conditions, this could be a contributing factor to the simulated surface NO2 bias. Errors in surface jNO2 do not appear 336 

to be a primary driver of the cloudy versus clear sky disagreements as the jNO2 values from WRF-Chem seem 337 

reasonable as compared to UV-B measurements from the NOAA Surface Radiation Budget (SURFRAD) monitoring 338 

network (Figure S3) and is consistent with other work showing small biases in jNO2 in WRF-Chem (Ryu et al., 2018). 339 

Follow-up work will address some of these shortcomings by adding particulate nitrate photolysis into the chemical 340 

mechanism and evaluating PBL depths during cloudy conditions using ceilometers.  341 

 342 
 343 
We can then use WRF-Chem as a transfer standard to suggest how column NO2 may change in relation to the surface 344 

NO2, and we find that the relative change in column NO2 and surface NO2 in response to clouds are very similar 345 

(Figure 7). This makes intuitive sense because most NO2 over the contiguous U.S. is located within the boundary 346 

layer, and typically clouds (if they exist) are located at the top of the boundary layer. So any sunlight obstructed by 347 

clouds will also obstruct the NO2 both at the surface and in the full boundary layer.  348 

 349 
Figure 7. Ratio of the annualized surface NO2 at 13:30 local time from WRF-Chem during cloudy and no cloud days. 350 
(Left) Surface NO2 (Right) Tropospheric column NO2.  351 
 352 
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3.5 Impacts of clouds on geostationary observations  353 

Finally, we use provisional TEMPO NO2 data and AQS NO2 data from 2 August 2023 through 31 August 2024 to 354 

understand how the changes of NO2 during clear and cloudy conditions may be altered at different hours of the day. 355 

Any hour in which there was high quality TEMPO NO2 data was assumed to be “clear sky”, while all other days are 356 

assumed to be cloudy. The threshold between high quality and lower quality data is a cloud radiative fraction =0.15, 357 

which is more stringent than the TROPOMI recommendation. Hours with low solar zenith angles (before 8:00 and 358 

after 16:00) have been excluded from this analysis. We find that the difference in surface NO2 between clear and 359 

cloudy days is negligible in the early morning hours and increases throughout the day (Figure 8).  360 

 361 
Figure 8. Normalized mean percentage change in the surface NO2 during days with cloudy skies as opposed to days 362 
with clear skies. Red dot shows the mean percentage change using TROPOMI clouds as shown in Figure 2c. Black 363 
line uses the same procedure for Aug 2023 – July 2024 data and TEMPO cloud data. 364 
 365 

Surface AQS NO2 at 8:30 local time is +6.3% larger on cloudy days than clear sky days, while at 15:30 it is +51.6% 366 

larger. The calculated 13:30 difference in surface NO2 between cloudy and clear sky days using TEMPO (+25.9%) is 367 

similar to the analogous value from TROPOMI (+36.0%). Differences between TEMPO and TROPOMI are expected 368 

because the timeframes for the analyses are different (2019 for TROPOMI and 2023-2024 for TEMPO), and because 369 

the cloud algorithms and cloud screening recommendations between the two instruments are different. The 370 

recommended TEMPO cloud fraction threshold for high quality data is more stringent (crf=0.15) and therefore some 371 

days with mostly clear skies are assumed to be “cloudy” in the TEMPO analysis. Therefore it is expected that the 372 

normalized mean percentage change of the AQS NO2 using TEMPO clouds is lower than the analogous value using 373 

TROPOMI clouds since the theoretical difference between “clear” and “cloudy” days is less stark.  374 

 375 
4 Discussion 376 

In this project we quantify how NO2 satellite data could be biased in estimating annualized surface NO2 377 

concentrations due to having high quality measurements only in the absence of clouds. We find that surface in situ 378 

NO2 measurements are on average +17% on all days compared to restricting to clear sky days and +36% larger 379 

during cloudy days vs. clear sky days, with a wide distribution based on geographic region and proximity to 380 
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roadway. Using the United States as a case study, we find the clear-sky bias to be largest in the Northeast U.S.; 381 

conversely, the clear-sky bias is smallest in the Southwest U.S. and near major roadways. In some areas of the urban 382 

Western U.S., Los Angeles and San Diego, we find that NO2 is lower on cloudy days, but these instances are rare 383 

(13% of monitoring sites) and are driven by unique transport patterns on cloudy days. Transport patterns are a 384 

significant driver of the regional clear vs. cloudy sky differences of surface NO2 concentrations. Although the 385 

analysis was computed for both TROPOMI and TEMPO data, it should be re-emphasized that the cloud algorithms 386 

used by both instruments are different. However, the qualitative finding that surface NO2 differences between 387 

cloudy and clear conditions tend to be larger in the afternoon than morning is consistent with a hypothesis that active 388 

photochemistry during periods of stronger afternoon sunlight would cause this change. 389 

This work also highlights how NO2 concentrations are different on days when satellite instruments are not acquiring 390 

a valid measurement. Our initial hypothesis of NO2 being consistently larger on cloudy days was only partially 391 

proven true. In many cases, surface NO2 concentrations and column NO2 are larger, but this is not always the case. 392 

This project demonstrates the balancing act of the reduced NO2 + OH sink and local climatological patterns (wind 393 

speed/direction, PBL depth, etc.) driving surface NO2 during cloudy conditions. Although one of the original goals 394 

of this study was to better gap-fill satellite tropospheric vertical column NO2 measurements in the presence of 395 

clouds, ultimately, we were not comfortable doing this yet. Reliance on a model as a transfer standard to convert 396 

surface concentrations into column concentrations exhibited too many biases under cloudy conditions. WRF-Chem 397 

model simulations of surface NO2 suggest that the clear-sky bias in WRF-Chem is on average much larger than the 398 

observed clear-sky bias: +59% on cloudy days vs. clear days for the model, and +36% for the AQS data. We 399 

hypothesized that errors in OH chemistry, NO2 recycling speeds, and PBL mixing depths could all be contributing to 400 

this high bias. Future work should target these three research topics. Future work could also use a machine-learning 401 

approach to account for some of these model biases. 402 

Another consideration with the interpretation of satellite measurements is the impact of lightning NOx, wildfire 403 

NOx, and aircraft NOx emissions, mostly staying aloft, which could be misinterpreted as surface NO2 404 

enhancements. While lightning NOx and wildfire NOx emissions are often screened out when applying a cloud filter 405 

because they occur in optically thick clouds/smoke, it is possible for the NO2 to remain aloft for several days after 406 

the initial thunderstorm/fire and be observed during clear skies. An algorithm to detect and screen out downwind 407 

NO2 attributed to upwind lightning NOx and wildfire NOx emissions could be especially helpful for subtropical and 408 

tropical areas. At minimum, care should be taken during timeframes and regions where there are large pulses of 409 

these types of emissions, such as our findings during summer. 410 

These results have repercussions for many applied studies that use satellite data to estimate surface NO2 411 

concentrations or NOx emissions. First, for studies that estimate surface concentrations, it is important to ingest 412 

surface NO2 measurements during cloudy (and nighttime) conditions in some capacity in order to appropriately 413 

estimate 24-hour concentrations; most studies already do this. If one were to use the clear-sky satellite data coupled 414 

with only a chemical transport model as a transfer standard to convert the column measurement into a pseudo-415 
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surface “measurement”, this would underestimate annualized NO2 concentration in most places. Unfortunately, there 416 

are many global regions with few or no surface measurements, so this is an important consideration when estimating 417 

surface NO2 in these regions. But even if one were to ingest surface NO2 during cloudy conditions, the spatial 418 

patterns of surface NO2 during cloudy conditions may be slightly different than implied by the clear-sky satellite 419 

data. For example, we find that NO2 surface concentrations under cloudy conditions are much larger in the Northeast 420 

U.S. than the Southwest U.S., and a cloud-free satellite map does not capture this.   421 

Second, for nitrogen oxide emissions estimates it is often assumed that anthropogenic emission rates are similar 422 

under cloudy and clear-sky conditions, but this is likely not the case in reality. Although we show that surface NO2 423 

concentrations are typically smaller under clear-skies, it is likely that anthropogenic NOx emissions are actually 424 

larger under regionwide clear-skies during summer and winter due to the moderating impact of clouds on surface 425 

temperature and subsequent impacts on heating-ventilation-air conditioning (HVAC) usage/emissions (Abel et al., 426 

2017). If we were able to better independently estimate tropospheric vertical column NO2 during cloudy conditions, 427 

perhaps this could be investigated in the future. 428 

Lastly, as satellite-derived NO2 applications increase over the coming years, it is important to document its 429 

successes and shortcomings. We see this project as a first-step towards better accounting for the clear-sky bias of 430 

satellite NO2 data. While future NO2 applications may use geostationary data, such as TEMPO, which may suffer 431 

from a similar bias depending on the hour of the day, an advantage of geostationary satellite data is the ability to use 432 

multiple measurements per day before and just after the clouds. It might be possible to isolate a two-hour window 433 

(one with a cloud and one without) to get a better handle on the instantaneous versus long-term role of clouds 434 

affecting NO2 concentrations.  435 

This work also highlights the critical role that chemical transport models can play in satellite NO2 applications. 436 

Errors in the model assumptions can hamstring many NO2 applications. For example, using a model to infer NO2 437 

during cloudy conditions in the lack of clear-sky satellite data would yield significant errors. Therefore, future work 438 

should concurrently focus on acquiring and using sub-orbital measurements to diagnose errors related in simulating 439 

NO2 in chemical transport models, so that they can be used as more robust transfer standards.  440 

 441 

 442 

 443 
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Data availability. TROPOMI NO2 version 2.4 data (http://doi.org/10.5270/S5P-9bnp8q8) processed to 0.01° × 444 

0.01° resolution (http://doi.org/10.5067/MKJG22GUOD34) and TEMPO NO2 version 3 data 445 

(http://doi.org/10.5067/IS-40e/TEMPO/NO2_L3.003) can be freely downloaded from NASA Earthdata. EPA AQS 446 

surface NO2 data can be downloaded from pre-generated files: 447 

https://aqs.epa.gov/aqsweb/airdata/download_files.html. ERA5 re-analysis hourly data on single levels 448 

(http://doi.org/10.24381/cds.adbb2d47) can be downloaded from Copernicus Climate Data Store 449 

(https://cds.climate.copernicus.eu/#!/home). NOAA SURFAD data can be downloaded from: 450 
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